Mejoramiento vegetal moderno, inteligencia artificial y derechos de propiedad intelectual

  • Miguel A. Rapela Centro de la Propiedad Intelectual, Facultad de Derecho, Universidad Austral
Palabras clave: mejoramiento vegetal, inteligencia artificial, derechos de propiedad intelectual, big data, genómica, fenómica

Resumen

El mejoramiento vegetal moderno con el fin de obtener nuevas variedades de plantas está basado en la selección genómica y fenómica generada en big data con millones de puntos de información. Ante tal cantidad de datos, se hace necesario usar inteligencia artificial para conjugar una visión y análisis completo del problema a través de una interacción ser humano-computadora nunca abordada.
El uso de inteligencia artificial ya ha generado desafíos interpretativos en patentes y derechos de autor. En mayor medida, el mejoramiento vegetal moderno con la asistencia de la inteligencia artificial está poniendo al descubierto desarticulaciones y anacronismos importantes en los sistemas de derechos del obtentor y de patentes de invenciones biotecnológicas. Los desafíos pueden incluso llegar hasta el planteamiento de quién sería el titular del derecho para el caso de productos obtenidos sin intervención humana.
El análisis de la situación indica, por un lado, que sería necesario una revisión del marco internacional de derechos de propiedad intelectual en materia viva vegetal, el cual está basado en tratados y convenios independientes que se aplican sobre un organismo indivisible, como lo es una nueva variedad vegetal. Una propuesta más lógica sería disponer de un único, moderno y actualizado sistema integrado sui generis de protección para todo tipo de germoplasma vegetal. Por otro lado, se plantea que, aun en los casos de productos obtenidos mediante procesos completos de inteligencia artificial, siempre deba existir una persona humana responsable en términos legales de las consecuencias de sus actos, sean estas positivas o negativas.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Miguel A. Rapela, Centro de la Propiedad Intelectual, Facultad de Derecho, Universidad Austral

Ingeniero Agrónomo y doctor en Ciencias Agrarias y Forestales (Universidad Nacional de La Plata). Director Académico de la Maestría en Propiedad Intelectual (Facultad de Derecho, Universidad Austral). Profesor asociado Categoría I (Facultad de Derecho, Universidad Austral). Director de Vinculación, Plataforma de Genómica y Mejoramiento (UBATEC S.A./FAUBA). Miembro de los Comités Técnicos de la Comisión Nacional de Semillas (CONASE). Exmiembro de la carrera de Investigador y Profesor en el Instituto Fitotécnico de Santa Catalina (Facultad de Ciencias Agrarias, UNLP).  Exdirector ejecutivo de la Asociación Semilleros Argentinos (ASA) y de la Asociación Argentina de Protección de las Obtenciones Vegetales (ArPOV). Exmiembro de la Comisión Nacional Asesora de Biotecnología Agropecuaria (CONABIA). Expresidente de la Fundación de la Facultad de Agronomía de la UBA. Expresidente del Comité de Propiedad Intelectual, International Seed Federation.

Citas

Breseghello, F. y Guedes Coelho, A. S. (2013). Traditional and Modern Plant Breeding Methods with Examples in Rice (Oryza sativa L.). Journal of Agricultural and Food Chemistry, 61(35), 8277-8286. https://doi.org/10.1021/jf305531j.

Butler, L. (1 de agosto de 2019). World first patent applications filed for inventions generated solely by artificial intelligence. Press Release, University of Surrey. https://www.surrey.ac.uk/news/world-first-patent-applications-filed-inventions-generated-solely-artificial-intelligence.

Chavali, P. (2020). How Math and Data Science Accelerate Innovation While Conserving Resources. https://www.cropscience.bayer.com/innovations/data-science/a/how-math-and-data-science-accelerate-innovation-while-conserving.

Crain J., Mondal S., Rutkoski J., Singh R. P. y Poland J. (2018). Combining high-throughput phenotyping and genomic information to increase prediction and selection accuracy in wheat breeding. Plant Genome, 11(1). https://doi.org/10.3835/plantgenome2017.05.0043.

Dolinski, K. y Troyanskaya, O. G. (2015). Implications of Big Data for cell biology. Molecular Biology of the Cell, 26(14), 2575-2578.

Donnenwirth, J. (23 de agosto de 2018). Does the UPOV System Foster Modern Innovation? Seed World. https://seedworld.com/upov-system-foster-modern-innovation/.

Foote, N. (2019). EU study to clarify gene editing court ruling further muddies waters. EURACTIV.com. https://www.euractiv.com/section/agriculture-food/news/eu-study-to-clarify-gene-editing-court-ruling-further-muddies-waters/.

Funk, J. (24 de febrero de 2020). Plant Breeding: Art or Science? Seed World. https://seedworld.com/plant-breeding-art-or-science/.

Gibson, D. G., Glass, J. I., Lartigue, C., Noskov, V. N., Chuang, R. Y., Algire, M. A., Benders, G. A., Montague, M. G., Ma, L., Moodie, M. M., Merryman, C., Vashee, S., Krishnakumar, R., Assad-Garcia, N., Andrews-Pfannkoch, C., Denisova, E. A., Young, L., Qing Qi, Z., Segall-Shapiro, T. H., Calvey, C. H., Parmar, P. P., Hutchison, C. A., Smith, H. O. y Venter, J. C. (2010). Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome. Science, 329(5987), 52-56.

Gil, Y., Greaves, M., Hendler, J. y Hirsh, H. (2014). Amplify scientific discovery with artificial intelligence: Many human activities are a bottleneck in progress. Science, 346(6206), 171-172.

González-Camacho, J. M., Ornella, L., Pérez-Rodríguez, P., Gianola, D., Dreisigacker, S y Crossa, J. (2018). Applications of Machine Learning Methods to Genomic Selection in Breeding Wheat for Rust Resistance. Plant Genome, 11(2), 1-15.

Guadamuz, A. (octubre de 2017). Artificial intelligence and copyright. WIPO Magazine. https://www.wipo.int/wipo_magazine/en/2017/05/article_0003.html.

Hancock, J. M. (2014). Introduction to phenomics. En Hancock, J. M., (Ed.), Phenomics (pp. 1-7). Florida: CRC Press.

Harfouche, A. L, Jacobson, D. A., Kainer, D., Romero, J. C. Harfouche, A. H., Mugnozza, G. S., Moshelion, M., Tuskan, G. A., Keurentjes, J. J. B. y Altman, A. (2019). Accelerating Climate Resilient Plant Breeding by Applying Next-Generation Artificial Intelligence. Trends in Biotechnology, 37(11), 1217-1235.

Harken, R. (2019). Artificial Intelligence for Plant Breeding in an ever-changing climate. Oak Ridge Leadership Computing Facility. https://www.olcf.ornl.gov/2019 /11/13/ai-for-plant-breeding-in-an-ever-changing-climate/.

Herrero, M. et al. (2020). Innovation can accelerate the transition towards a sustainable food system. Nat Food, (1), 266-272. https://doi.org/10.1038/s43016-020-0074-1.

Hou, Y. (2019). Protecting New Plant Varieties in China and Its Major Problems. En Liu, K. C., Racherla, U. (Eds.), Innovation, Economic Development, and Intellectual Property in India and China. Singapur: Springer. https://doi.org/10.1007/978-981-13-8102-7_14.

ISAAA. (2019). Omics Sciences: Genomics, Proteomics, and Metabolomics. Pocket K No. 15. https://www.isaaa.org/resources/publications/pocketk/15/default.asp.

Lazcano, R. (6 de enero de 2020). Diferencia entre inteligencia artificial, machine learning y deep learning. Enzyme Advising Group. https://blog.enzymeadvisinggroup.com/inteligencia-artificial-machine-learning.

Lawson, C. (2015). The breeder’s exemption under UPOV 1991, the Convention on Biological Diversity and its Nagoya Protocol. Journal of Intellectual Property Law & Practice, 10(7), 526-535. https://doi.org/10.1093/jiplp/jpv080.

Marr, B. (16 de noviembre de 2018). The Wonderful Ways Artificial Intelligence Is Transforming Genomics and Gene Editing. Forbes. https://www.forbes.com/sites/bernardmarr/2018/11/16/the-amazing-ways-artificial-intelligence-is-transforming-genomics-and-gene-editing/?sh=f1f542e42c11.

NCBI. (2020). Commonly Used Genome Terms. National Center for Biotechnology Information. US National Library of Medicine. https://www.ncbi.nlm.nih.gov/projects/genome/glossary.shtml.

NCC. (noviembre de 2019). Glossary of Terms. Centers for Disease Control and Prevention. Office of Science (OS). Office of Genomics and Precision Public Health. https://www.cdc.gov/csels/dsepd/ss1978/glossary.html.

Rapela, M. A. (2000). Derechos de propiedad intelectual en vegetales superiores. Buenos Aires: Editorial Ciudad Argentina.

Rapela, M. A. (2014). Post Transgenesis: new plant breeding techniques. Seed News, XVIII(1), 14-15.

Rapela, M. A. (2016). Ley 20.247 de Semillas y Creaciones Fitogenéticas: las razones para su actualización y los proyectos bajo análisis en Argentina. Revista Interdisciplinaria de Estudios Agrarios, (45), 69-98.

Rapela, M. A. (2018a). Metodología de CRISPR, aspectos legales y regulatorios. Actas XI Congreso Nacional de Maíz, Mesa de Genética y Mejoramiento Genético Vegetal (pp. 266-270).

Rapela, M. A. (2018b). Edición Génica mediante sistemas CRISPR/Cas. AGROPOST CPIA, (155), 11-13.

Rapela, M. A. (2018c). Gene editing and CRISPR-Cas. Seed News Magazine, XXII, 12-16.

Rapela, M. A. (2019a). Ley 20.247 de Semillas y Creaciones Fitogenéticas – Análisis de los proyectos de reforma y del dictamen de las comisiones. Anales de Legislación Argentina, LXXIX(7), 3-93.

Rapela, M. A, (2019b). The European Court of Justice ruling on products derived from genome editing: a case for Brazil and Argentina? Seed News Magazine, XVIII(1), 6-8.

Rapela, M. A. (2019c). Post Malthusian dilemmas in Agriculture 4.0. En Rapela, M. A., Fostering innovation for Agriculture 4.0 – A comprehensive Plant Germplasm System (pp. 1-16). Suiza: Springer Nature.

Rapela, M. A. (2019d). The regulatory tangle. En Rapela, M. A., Fostering innovation for Agriculture - A comprehensive Plant Germplasm System 4.0 (pp. 17-52). Suiza: Springer Nature.

Rapela, M. A. (2019e). Plant Germplasm Integrated System. En Rapela, M. A., Fostering innovation for Agriculture 4.0 - A comprehensive Plant Germplasm System (pp. 71-105). Suiza: Springer Nature.

Rapela, M.A. (2019f). Soberanía tecnológica y propiedad intelectual en el marco de los proyectos de reforma de la ley 20.247 de semillas y creaciones fitogenéticas. Revista Jurídica de Agronegocios, (8), IJ-DCCLII-920.

Rapela, M. A. y Levitus, G. (2014). Novas técnicas do melhoramento. Anuario da ABRASEM, Associação Brasileira de Sementes e Mudas (pp. 29-32).

Rapela, M. A. y Witthaus, M. (2006). Vacíos de protección en la legislación argentina sobre derechos del obtentor y de patentes. En Rapela, M. A., (Dir.), Innovación y Propiedad Intelectual en Mejoramiento Vegetal y Biotecnología Agrícola (pp. 269-291). Buenos Aires: Heliasta.

Schlackman, S. (22 de abril de 2018). Who holds the Copyright in AI Created Art. Artrepreneur Art Law Journal. https://alj.artrepreneur.com/the-next-rembrandt-who-holds-the-copyright-in-computer-generated-art/.

Thaler, S. L. (18 de noviembre de 2008). US Patent 7,454,388, Device for the autonomous bootstrapping of useful information. Washington: DC US Patent and Trademark Office.

Voss-Fels, K. P., Cooper, M. y Hayes, B. J. (2019). Accelerating crop genetic gains with genomic selection. Theoretical and Applied Genetics, 132(3), 669-686.

UPOV. (1991). Convenio Internacional para la Protección de las Obtenciones Vegetales. https://www.upov.int/edocs/pubdocs/es/upov_pub_221.pdf.

UPOV. (2004). Molecular Techniques. International Union for the Protection of New Varieties of Plants (UPOV) Administrative and Legal Committee. Fiftieth Session Geneva, 18-19 de octubre. Document prepared by the Office of the Union.

Wang, H., Cimen, E., Singh, N. y Buckler, E. (2020). Deep learning for plant genomics and crop improvement. Current Opinion in Plant Biology, (54), 34-41.

WIPO. (13 de diciembre de 2019). Conversation on Intellectual Property (IP) and Artificial Intelligence. (AI). https://www.wipo.int/edocs/mdocs/mdocs/en/wipo_ip_ai_2_ge_20/wipo_ip_ai_2_ge_20_1.pdf.

WIPO. (2020). Patent Expert Issues: Biotechnology. https://www.wipo.int/patents/en/topics/biotechnology.html.

Zavia, M. S. (4 de agosto de 2016). Una inteligencia artificial pinta un nuevo cuadro de Rembrandt tras estudiar toda su obra”. GIZMODO. https://es.gizmodo.com/una-inteligencia-artificial-pinta-un-nuevo-cuadro-de-re-1769869684.

Publicado
2020-12-12
Cómo citar
Rapela, M. A. (2020). Mejoramiento vegetal moderno, inteligencia artificial y derechos de propiedad intelectual. Revista Jurídica Austral, 1(2), 839-866. https://doi.org/10.26422/RJA.2020.0102.rap
Sección
Derecho y tecnologías disruptivas